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Two-dimensional strain determination by the inverse SURFOR wheel 
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Abstract--A simple method of two-dimensional strain determinat ion from the preferred orientation of deformed 
lines is presented.  It is based on the change of probability of  intersecting lines on a given traverse as a function of 
traverse orientation. The method can be applied to real lines such as grain boundary  outlines or to virtual lines 
such as the tie-lines between centre points of  neighbouring grains. In this manne r  est imates for the strain of 
surfaces (i.e. of  the particles enclosed by the surfaces) and of bulk strain can be obtained. 

BASIC CONCEPTS 

IF A fabric consisting of randomly oriented surfaces is 
deformed, the resulting preferred orientation of surfaces 
carries all the information necessary to derive the finite 
strain ellipsoid. In the undeformed state, any two- 
dimensional section displays lines (or outlines) of ran- 
dom orientation. After deformation, the preferred 
orientation of lines on a given section yields the informa- 
tion necessary to derive the finite strain ellipse (Panozzo 
1984). 

The method presented here takes the 'inverse' point 
of view. Rather than considering the actual lines of the 
fabric and their changes in length and orientation as a 
function of deformation, the probability of their being 
intersected on a given traverse is considered. Figure l(a) 
shows the undeformed state represented by a set of lines 
with random orientation. Figure l(b) shows the same set 
of lines after deformation. In the undeformed state, the 
probability of lines being intersected on a given traverse 
(such as A, B, C or D) is the same for all directions. In 
other words, within statistical variations, the number of 
intersections per unit length is constant for all directions. 

n(9)  = N = constant, (1) 

where n is the number of intersections per unit length in 
the undeformed state, and 9 is the orientation of the 
traverse measured with respect to a reference axis x (see 
Fig. la). The average distance between intersection 
points, d, is inversely related to n : 

d(9)  = l /n(9)  = 1/N = constant. (2) 

In Fig. l(b), the deformed set of lines is shown. On the 
deformed traverses (A' ,  B',  C' and D')  the number of 
intersections has remained the same as before deforma- 
tion, but because the lengths of the traverses have 
changed, so have the average distances between points 
of intersection. The deformed length, L ' ,  in a given 
direction is given by: 

L'(~b') = ~/h = 1/Vr(1/AI-COS 2 (q~') + 1/h2.sin 2 (4~')), 
(3) 

where ~b' is the angle between the direction of length L'  
in the deformed state and the direction of At" A is the 
quadratic extension; X/A1 and ~/A2 are the principal axes 
of the strain ellipse. Note that ~b' is not equal to 9 ' ;  they 
are the same only if A1 is parallel to the reference axis x ' .  
In the general case, the strain ellipse is inclined at an 
angle, 9i (see Fig. 2), and 

L ' ( $ ' )  = L ' ( 9 '  - 9,). (4) 

The average distance between intersections after 
deformation is given by 

d ' ( 9 ' )  = L ' ( 9 '  - 9 i ) ' d ( 9 ) ,  (5) 

and the number of intersections per unit length in the 
deformed state varies as the inverse of the length change 
in that direction: 

n ' ( 9 ' )  = 1/d ' (9 ' ) .  (6) 

Substituting for d ' ( 9 ' )  (equation 5) and then for 
L ' ( 9 '  - 9i) (equation 3) and d(9) (equation 2), one 
finds 

n ' (9 ' )  = N. k/(Z~ • cos 2 (9 '  - 9i) -at- )t~. sin 2 (9 '  - 9i)), 
(7) 

where X/A~ and ~/A~ are the reciprocal principal elonga- 
tions. The function n ' (9 ' ) ,  relating the number of inter- 
sections n '  in the deformed state to the orientation 9 '  of 
the traverse, is essentially determined by the equation of 
the reciprocal strain ellipse since N, the number of 
intersections on a traverse in the undeformed state, and 
9i, the orientation of the long axis of the strain ellipse 
with respect to the x'  direction, are both constants. 

The function n ' (9  ') exhibits one maximum ( n ' ( 9  ')max 
t = N- ~/A~) at 9max = 900 -'['- 9i  and a minimum (n'(9')min 

= N'~/A[) at 9min = 9i" Therefore, if the curve n ' ( 9 ' )  
of a given fabric has been determined, the axial ratio, 
V'A2/X/A 1 , of the strain ellipse and the orientation, 9i, of 
its long axis can be derived. 

V } [ 2 / V A I  = ~V'/AI/V,~2 = n ' ( 9 ' ) m i n / n ' ( 9 ' ) m a x ,  ( 8 a )  
t 

9i = 9man" (8b) 

In Fig. l(b), n ' ( 9 ' ) m i n / n ' ( 9 ' ) r n a x  = X,/A2/~/AI = 0 . 5  and 
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M E T H O D  

Figure 3 shows the inverse SURFOR wheel in the 
starting position. This figure may also be used to create 
copies of the wheel on transparent film. 

The procedure is as follows: 
(1) On the drawing of the fabric outlines (i.e. of the 

lines that are assumed to have been randomly oriented 
in the undeformed state) a reference direction, x' ,  and a 
centre point, C, are chosen (see Fig. 4a). The centre of 
the inverse SURFOR wheel is placed on C, the set of 
parallel lines on the wheel in the direction of x ' .  

L 
~ 

¢, 

X' 

Fig. 2. General  orientation of a line, L ' ,  and the strain ellipse with 
respect to a reference direction, x ' .  ~i = orientat ion of the  long axis of  
the  strain ellipse with respect to x ' ;  ~ '  -- orientation of the line with 
respect to x ' ;  ~ '  = orientation of the line with respect to the long axis 

of  the strain ellipse in the deformed state. 
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Fig. 3. The  inverse S U R F O R  wheel. 
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Fig. 4. (a) Outl ines of  grain boundaries  in a quartzite (after fig. 7.16, p. 
118 of Ramsay  & Huber  1983); x '  = reference direction, C = centre. 
(b) Analysis of  the grain boundaries  shown in (a); plot of  number  of  
intersections, n ' ,  versus orientation, ~ ' ;  dashed line = curve fitted 

through points, n'(~')min = 45, n'(~')max = 57. 

the orientation of the long axis of the strain ellipse with 
respect to the reference direction (i.e. the orientation, 
~mi,, where n '(~ ')min occurs) is 0 °. 

The proposed method of strain analysis consists of 
rotating a set of parallel lines of fixed and constant length 
through 180 ° and counting the intersections with the 
lines (or outlines) of the deformed fabric at regular 
intervals of ~'.  [The name of the method is derived from 
another method of strain determination that considers 
SURFace ORientations (Panozzo 1984).] 

Fig. 1. (a) Set of  random lines and traverses in the undeformed state. (b) The same lines after deformation.  Axial ratio of  
strain ellipse, b/a = 0.5, quadratic extensions,  ~/Ai = 1.414, ~A 2 = 0.707. x and x '  = axes of  reference in the undeformed 
and deformed states,  respectively, ~ and ~ '  = angles of  orientation of traverses in the undeformed and deformed states 

respectively. 
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(2) The number of intersections of the set of parallel 
lines with the fabric outlines is counted for 18 orienta- 
tions, turning the wheel counterclockwise as indicated 
by the arrows. Position 1 corresponds to an angle of 10 °, 
position 2 to 20 °, etc. The number of intersections, n', 
are plotted as a function of the orientation, ~0' (see Fig. 
4b), measuring the angles counterclockwise. The num- 
ber of intersections per orientation should average 50 or 
more. Division by the total length, L, of the set of test 
lines (in order to obtain the number of intersections per 
unit length) is not necessary, as L is a constant. 

(3) A curve is fitted through the points. This can be 
done (a) by 'eye-bailing' or (b) by calculating a best-fit 
curve. The minimum and maximum values, n ' ( ~ ' ) m i n  

and n '(~0 ')max, of the curve and the angle, ~Omin, at which 
the minimum occurs are determined. The ratio 
n'(q~')min/n'(~')max is the ratio, V ) t 2 / V A I ,  of the strain 
ellipse, the angle ~o~i . is the orientation ~0i of its long axis. 

APPLICATION 

The fabric shown in Fig. 4(a) has been analyzed using 
three different techniques: 
(a) using the method of Fry (1979), as described in 

Ramsay & Huber (1983, p. 117-124); 
(b) using the regular SURFOR method (Panozzo 1984); 
(c) using the inverse SURFOR wheel presented in this 

paper. 
The advantages of methods (a) and (c) are ease of 

application and the fact that all necessary calculations 
can be done by hand. In both cases it only takes a 
relatively short time (depending on the size of the 
analyzed area) to obtain the primary plot. The critical 
step in method (a) is fitting an ellipse into the vacancy 
field left between the point clusters. The critical step in 
the method presented here is fitting a smooth curve 
through the points of the n'/~' plot (see Fig. 4b). 
Method (b) is computer-based and uses the projections 
of particle outlines. It involves digitization of particle 
contours on enlarged photographs. In testing and practi- 
cal applications this method has proved to be very 
sensitive, while yielding reliable results. 

The results obtained by the three methods are pre- 
sented in Table 1. The axial ratios obtained from the 
regular SURFOR method (b) and the inverse SURFOR 
wheel (c) are practically the same. The orientations of 
the long axis of the strain ellipse are also quite similar 

considering that the angular interval at which n'(~0') is 
evaluated is 10 °. The axial ratio obtained by Fry's 
method (a) is greater than the ratio obtained by the other 
two methods. The angle, ¢i, between the long axis of the 
strain ellipse and the reference direction, x', obtained 
using Fry's method, deviates from the one obtained by 
the SURFOR method by 7 °. 

It should be noted that the two different types of 
analysis do not make use of the same fabric element. 
Fry's method is based on change of distance between the 
centre points of neighbouring grains, while the SUR- 
FOR methods are based on the deformation of grain 
boundary surfaces. The bulk deformation determined 
by Fry's method and the deformation of the grain bound- 
ary surfaces measured by the SURFOR methods need 
not coincide, and thus different results may be obtained 
using these two methods. This would be the case, for 
example, if there were a competence contrast between 
particles and matrix (see Discussion). 

In order to better compare Fry's method and the 
inverse SURFOR wheel, another application of the 
latter is used. It is assumed that the undeformed state is 
defined by the random orientation of the (virtual) tie- 
lines between the centre points of neighbouring grains 
(see Fig. 5a) rather than by the random orientation of 
the (real) grain boundary outlines (Fig. 4a). This is 
equivalent to assuming that the distribution of centre 
points of the undeformed fabric is isotropic anticlustered 
(i.e. Fry's original assumption). 

The centre points of the fabric shown in Fig. 4(a) have 
been determined by inspection and the tie-lines between 
them drawn in by hand. The curve resulting from the 
analysis of the deformed tie-lines is shown in Fig. 5(b), 
and the values of the derived strain parameters are given 
in Table 1 [method (d)]. The values for both the axial 
r a t i o  ~v/Az/~/A1 and the orientation of the long axis of the 
strain ellipse are now close to the values determined by 
the regular SURFOR method. In other words, the bulk 
strain and the strain recorded in the grain boundaries are 
probably the same. It is therefore assumed that the 
difference between the results obtained using Fry's 
method and those obtained using the inverse SURFOR 
wheel is an artefact of the different measuring 
techniques. It is introduced during the critical step of 
each method; that is during ellipse fitting in the first case 
and curve fitting in the second. In the discussion by 
Ramsay & Huber (1983, p. 124), the ambiguity associ- 
ated with fitting an ellipse to Fry's primary plot is clearly 
recognized. 

Table 1. Results of fabric analysis 

Analyzed Axial ratio of strain ellipse Orientat ion of 
Method fabric element "X/A_,/~/A~ ~/A~/~/A 2 long axis ~0~ 

(a) Fry Centre points 0.63 1.59 152 ° 
(b) S U R F O R  Outlines 0.78 1.28 145 ° 
(c) Inverse S U R F O R  Outlines 0.79* 1.27 150 °* 
(d) Inverse S U R F O R  Tie-lines 0.73t  1.37 150°t 

* See Fig. 4(b). 
t S e e  Fig. 5(b). 
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Fig. 5. (a) Fabric consisting of tie-lines between centre points of 
neighbouring grains: x '=  reference direction, C = centre. (b) 
Analysis of the tie-lines shown in (a): plot of points of intersection, n', 
versus orientation, 9'; dashed line = curve fitted through points. 

n ' ( ~ ' ) m i n  = 8 8 ,  n ' ( ~ ' ) m a x  = 120. 

DISCUSSION 

A few general points associated with the interpreta- 
tion of fabrics in terms of strain are addressed below. 

1. The initial state 

In the example analyzed above, as in most other cases, 
the initial state is unknown. Random orientation of 
surfaces and random anticlustered distribution of centre 
points are assumed for the initial state (cf. Fry 1979, 
Panozzo 1984). One may well argue that, for example, 
sedimentation and lithification must have introduced a 
pretectonic fabric and that the value obtained from 
fabric analysis should be corrected accordingly. How- 
ever, this correction cannot be applied because informa- 
tion concerning the pretectonic fabric is not available. 

It should be noted that making certain assumptions 
concerning the initial state is by no means unique to the 
method described here. The advantage of the method, 
however, is that it provides a quick measurement of both 
the strain recorded in the centre point distribution and 
the strain recorded in the grain boundary surfaces. If 
they coincide, the above-mentioned assumption con- 
cerning the initial state can be sustained. If they differ, 
the initial state has to be redefned as either a state of 
random distribution of centre points or a state of random 
orientation of surfaces. Another possible way of explain- 
ing the divergence would be to assume strain partitioning 
(see below). 

2. Deformational behaviour of  grain boundaries 

The second assumption on which strain interpretation 

(a) 

Fig. 6. Reversed strain of the fabric shown in Fig. 4(a), (a) using the 
strain values obtained by Fry's method, (b) using the strain values 

obtained by the SURFOR method. 

relies is that the net effect of all active deformation 
processes be such that the grain boundaries can be 
regarded as passive markers. This is the case, for 
example, for crystal-plastic deformation mechanisms. It 
is not the case for grain boundary migration, pressure 
solution, recrystallization, or other deformation 
mechanisms in which the behaviour of grain boundaries 
(i.e. of surfaces) is independent of the behaviour of the 
grains (i.e. of volumes). 

For the sample analyzed here (which is a Cambrian 
quartzite deformed at conditions of relatively low pres- 
sure and temperature) it was assumed that grain bound- 
aries acted as passive markers. A qualitative test for this 
assumption consists of numerically reversing the strain 
of the sample by the amount determined from surface 
analysis. If, after reversing the strain, the grain bound- 
aries appear randomly oriented (having a uniform orien- 
tation distribution of surface), if the grains are more or 
less isometric (giving the fabric a natural undeformed 
look), and if the centre point distribution is isotropic, the 
grain boundaries may be interpreted as passive markers. 
Note that this is merely an empirical inference which 
implies that the strain recorded in the grain boundary 
surface is equal to the bulk strain, and that the bulk 
strain is given by the centre point distribution. 

The fabric shown in Fig. 4(a) has been undeformed 
using the strains obtained by Fry's method and the 
SURFOR method (see Figs. 6a & b, respectively). 
Inspection and additional strain analysis of these fabrics 
by other, independent, methods (Rf/~method (Ramsay 
1967), and particle orientation (Panozzo 1983)) show 
that Fig. 6(b) represents an undeformed fabric whereas 
Fig. 6(a) appears strained. It is therefore concluded that 
the strain obtained by applying the inverse SURFOR 
wheel to the tie-line fabric represents a better estimate 
of the bulk strain than the one obtained from using Fry's 
method. 

The general question as to whether grain boundary 
outlines of (monomineralic) crystalline rocks may be 
used as strain markers is not unique to the method 
described here. Because of the possibility of grain 
boundary migration, recrystallization, grain boundary 
sliding, etc., it seems obvious that they are less reliable 
than the outlines of fossils or of particles in a matrix. 

If the method is applied to particle surfaces which are 
completely convex (or if the indentations display no 
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preferred orientation that is different from the preferred 
orientation of the particles), the strain determined from 
the particle outlines is equal to the strain determined 
from the shape of the cross-sectional areas of the par- 
ticles (see Panozzo 1984). In these cases, surface strain 
and volume strain (of particles) coincide. The advantage 
of this is that surface strain analysis can be substituted for 
the analysis of grain shapes. This may lead to less biased 
results because one can avoid approximating grain 
shapes by ellipses, finding long and short axes, etc. 

3. Strain partitioning 

As has been mentioned, the strain recorded in the 
change of distance between neighbouring grains and 
that recorded in the change of length and orientation of 
grain boundary surfaces need not coincide. One cause 
for such differences may be the fact that surfaces do not 
act as passive markers and hence do not really record 
strain (see above). Another possible explanation has 
been mentioned, which arises from mechanical con- 
siderations. If the rheologies of particles and matrix are 
different from one another, different amounts of strain 
are recorded. In this case the particle surfaces do actually 
record strain and, given the material properties and the 
appropriate theory, the bulk strain can be determined 
from them (e.g. Gay 1968). 

In polymineralic rocks strain partitioning between the 
different phases may occur. In monomineralic rocks 
strain partitioning between grain volumes and grain 
boundary surfaces may occur: if the grains are not 
perfectly welded, a certain amount of strain may be 
taken up along the grain boundaries by grain boundary 
sliding. Another possibility is the formation of a core- 
mantle structure where deformation is restricted to the 
mantle region of grains. 

The method described here does not require complete 
grain boundary outlines. One is therefore capable of 
analyzing disconnected surface elements, provided only 
that their initial orientation was random and that they 
respond to deformation as passive markers. Thus, one 
may analyze in separate turns the deformational be- 
haviour of different mineral surfaces or of selected 
mineral interfaces or reaction surfaces. This is very 
useful in cases where strain partitioning is to be expected 
not only between different phases but also between 
different portions of a grain boundary surface, or discon- 
nected surface elements. 

It should be noted that the method is also valid if the 
outlines are truncated by the limits of the sampling area 
(always assuming that the initial orientation of the lines 
was random and that the present preferred orientation is 
due to deformation). 

4. Fabric versus strain 

The rock geometry, that is the fabric and the inferred 
deformation have to be distinguished carefully. Not 
every preferred orientation of surface is due to deforma- 

tion, in fact many are not even compatible with an 
interpretation of strain. 

For randomly oriented surfaces the orientation distri- 
bution function is uniform. Its characteristic shape is the 
circle (Panozzo 1986); the corresponding n'/q~' plot is a 
constant. After deformation, and given the above men- 
tioned conditions, the n'/q~' plot corresponds to that of 
the finite strain ellipse. The theoretical function n'(q~') is 
given in equation (7). Within an interval of 180 °, this is a 
unimodal symmetric function. Whether deviations of 
measured data from this theoretical form are statistically 
significant or not is hard to assess. So far, the following 
procedure has been adopted: if the function is unimodal 
and symmetric (i.e. O / m a  x - -  O t m i  n : 90 ° _+ 5°), the 
characteristic shape is taken to be an ellipse and an 
interpretation in terms of strain cannot be excluded on 
the basis of the shape of the function n'(q~'). In other 
words, this method represents an independent test 
whether a given preferred orientation is at all compatible 
with an interpretation in terms of strain or not. 

CONCLUSIONS 

The method of the inverse SURFOR wheel is a valid 
and practical tool for fabric analysis. It is easy to use and 
does not require computer facilities. The results ob- 
tained from applying it to real surfaces compare well 
with those from the regular SURFOR method. Interpre- 
tation in terms of strain rests on the assumption that the 
strain is recorded in the preferred orientation of surfaces 
(e.g. grain boundary outlines). 

The method may also be applied to tie-lines between 
centre points of neighbouring particles. This is equiva- 
lent to assuming that in the undeformed state the orien- 
tations of the (virtual) tie-lines are random, that is, the 
distribution of centre points is isotropic and anticlus- 
tered. The method then compares favourably with Fry's 
method, since there appears to be less ambiguity associ- 
ated with fitting a curve to the n '/~0' plot than with fitting 
an ellipse into the vacancy field of the Fry plot. 
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